Cho hình chóp S.ABCD đem lòng ABCD là hình vuông vắn cạnh a, SA vuông góc với lòng và SA = a (tham khảo hình vẽ bên). Góc thân thiết nhị mặt mũi bằng phẳng (SAB) và (SCD) bằng
Bạn đang xem: cho hình chóp sabcd có đáy abcd là hình vuông
Đáp án đúng: C
Lời giải của Tự Học 365
Giải chi tiết:
Ta có: \(\left\{ \begin{align} AB\subset \left( SAB \right) \\ CD\subset (SCD) \\ AB//CD \\ S\in \left( SAB \right)\cap (SCD) \\ \end{align} \right.\)
Gọi \(d=\left( SAB \right)\cap (SCD)\Rightarrow \)d là đường thẳng liền mạch qua S và tuy nhiên song với AB, CD.
Ta có: \(\left\{ \begin{align} AD\bot AB \\ SA\bot AB \\ \end{align} \right.\Rightarrow AB\bot (SAD)\)
Mà \(d//AB\Rightarrow d\bot (SAD)\)
Xem thêm: bệnh nào sau đây liên quan đến sự thiếu nguyên tố vi lượng
\(\left\{ \begin{align} \left( SAD \right)\cap (SAB)=SA \\ (SAD)\cap (SCD)=SD \\ \end{align} \right.\Rightarrow \left( \widehat{(SAB);(SCD)} \right)=\left( \widehat{SA;SD} \right)=\widehat{ASD}\)
Tam giác SAD vuông bên trên A đem SA = AD = a \(\Rightarrow \Delta SAD\)vuông cân nặng bên trên A \(\Rightarrow \widehat{ASD}={{45}^{0}}\Rightarrow \left( \widehat{(SAB);(SCD)} \right)={{45}^{0}}\)
Chọn: C
Bình luận